Enhancing multiphoton upconversion through energy clustering at sublattice level.
نویسندگان
چکیده
The applications of lanthanide-doped upconversion nanocrystals in biological imaging, photonics, photovoltaics and therapeutics have fuelled a growing demand for rational control over the emission profiles of the nanocrystals. A common strategy for tuning upconversion luminescence is to control the doping concentration of lanthanide ions. However, the phenomenon of concentration quenching of the excited state at high doping levels poses a significant constraint. Thus, the lanthanide ions have to be stringently kept at relatively low concentrations to minimize luminescence quenching. Here we describe a new class of upconversion nanocrystals adopting an orthorhombic crystallographic structure in which the lanthanide ions are distributed in arrays of tetrad clusters. Importantly, this unique arrangement enables the preservation of excitation energy within the sublattice domain and effectively minimizes the migration of excitation energy to defects, even in stoichiometric compounds with a high Yb(3+) content (calculated as 98 mol%). This allows us to generate an unusual four-photon-promoted violet upconversion emission from Er(3+) with an intensity that is more than eight times higher than previously reported. Our results highlight that the approach to enhancing upconversion through energy clustering at the sublattice level may provide new opportunities for light-triggered biological reactions and photodynamic therapy.
منابع مشابه
Tuning upconversion through energy migration in core-shell nanoparticles.
Photon upconversion is promising for applications such as biological imaging, data storage or solar cells. Here, we have investigated upconversion processes in a broad range of gadolinium-based nanoparticles of varying composition. We show that by rational design of a core-shell structure with a set of lanthanide ions incorporated into separated layers at precisely defined concentrations, effic...
متن کاملUpconversion luminescence of an insulator involving a band to band multiphoton excitation process.
A multiphoton process to the conduction band of the insulator Er2O3 is reported, which occurs in vacuum under near infrared excitation. The enormous upconversion intensity is two orders of magnitude greater than that in air, and also the intensity ratio for green and red emission bands is inverted. The mechanism is probed by experiments of laser power dependence, cathodoluminescence, photocondu...
متن کاملConfining energy migration in upconversion nanoparticles towards deep ultraviolet lasing
Manipulating particle size is a powerful means of creating unprecedented optical properties in metals and semiconductors. Here we report an insulator system composed of NaYbF4:Tm in which size effect can be harnessed to enhance multiphoton upconversion. Our mechanistic investigations suggest that the phenomenon stems from spatial confinement of energy migration in nanosized structures. We show ...
متن کاملEnergy Migration Upconversion in Manganese(II)-Doped Nanoparticles.
We report the synthesis and characterization of cubic NaGdF4:Yb/Tm@NaGdF4:Mn core-shell structures. By taking advantage of energy transfer through Yb→Tm→Gd→Mn in these core-shell nanoparticles, we have realized upconversion emission of Mn(2+) at room temperature in lanthanide tetrafluoride based host lattices. The upconverted Mn(2+) emission, enabled by trapping the excitation energy through a ...
متن کاملMultiphoton harvesting metal–organic frameworks
Multiphoton upconversion is a process where two or more photons are absorbed simultaneously to excite an electron to an excited state and, subsequently, the relaxation of electron gives rise to the emission of a photon with frequency greater than those of the absorbed photons. Materials possessing such property attracted attention due to applications in biological imaging, photodynamic therapy,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nature materials
دوره 13 2 شماره
صفحات -
تاریخ انتشار 2014